IBIS Specification Change Template, Rev. 1.2
IBIS Specification Change Template, Rev. 1.2
[bookmark: _Toc203975853][bookmark: _Toc203976274][bookmark: _Toc203976412]BUFFER ISSUE RESOLUTION DOCUMENT (BIRD)

BIRD NUMBER: 	xxx
ISSUE TITLE: 		AMI Reserved Parameters for Buffer Directionality
REQUESTOR: 	Michael Mirmak, Intel Corp.

DATE SUBMITTED:	(draft 1 2 to IBIS-AMI Task Group on Feburary 6April 6, 2015)
DATE REVISED:	
DATE ACCEPTED BY IBIS OPEN FORUM:

STATEMENT OF THE ISSUE:

The 6.0 specification strongly implies that only input-only and output-only [Model]s may be associated with AMI data using the [Algorithmic Model] keyword pair. However, there is no explicit prohibition on using any model type with [Algorithmic Model] except Terminator, Series, and Series_Switch.

The ibischk 6.01 parser correctly generates no errors if an [Algorithmic Model] keyword pair is associated with a model of Model_type I/O. However, the association of an I/O buffer with either a Tx or Rx AMI file creates an ambiguous situation: the model, EDA tool, and user have no way currently to communicate, either in traditional IBIS or using AMI Reserved Parameters, the directionality state of the buffer at any one time.

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION:

Two Reserved Parameters, AMI_Model_Type and AMI_Model_Direction, are proposed to define the model type and direction associated with a given Algorithmic Model. These are assumed to be consistent with the Model_type defined for the associated analog [Model].

A new Reserved Parameters, AMI_Model_Type, is proposed to define the model type and supported directionality associated with a given Algorithmic Model. This is assumed to be consistent with the Model_type defined for the associated analog [Model].

Ideally, a warning, caution, or noten error would be generated for buffers, with associated Algorithmic Models, of Model_type I/O, 3-state, I/O_open_drain, I/O_open_sink, I/O_open_source, I/O_ECL, or 3-state_ECL, where these this Reserved Parameter is are not present.

ANY OTHER BACKGROUND INFORMATION:

The intent of these this Reserved Parameters is ensure the EDA tool is “aware” of the associated models’ capabilities, to prevent cases where a channel is connected only to Rx endpoints with no Tx in the channel, or only to Tx endpoints with no receiving or 3-state device capable of receiving present or configured to do so.

This parameter set is assumed to be unaffected by the Polarity [Model] subparameter.

Thanks to Walter Katz of Signal Integrity Software (SiSoft) for his suggestions in an earlier verison of this proposal.

Draft 2 incorporates rules for the two restrictions on DLL and .ami file support that were the consensus of the IBIS ATM Task Group:

1) DLLs may be configured to support both TX and RX directions in a single DLL, or separate DLLs may be provided for each direction supported by a model.
2) Each direction shall have a separate associated .ami file.

In addition, a new subparameter, “Direction”, is added for [Algorithmic Model]. The AMI_Model_Direction parameter is removed.

Add the following text under the “General Reserved Parameters” section:
[bookmark: _Ref300060650][bookmark: _Toc203968998][bookmark: _Toc203969161][bookmark: _Toc203975931][bookmark: _Toc203976352][bookmark: _Toc203976490]Parameter DEFINITIONs
…

Parameter:	AMI_Model_Type
Required:	No
Descriptors:
Usage:		Info
Type:		String
Format:		Value
Default:	<string_literal>
Description:	<string >
Definition:	Tells the EDA tool whether the associated Algorithmic Model describes a buffer in transmitter (Tx), or a receiver (Rx) mode of operation, or a .configurable buffer capable of either transmission or reception (I/O). 3-state buffer declaration is also supported.
Usage Rules:	
AMI_Model_Type accepts string literal values of “I/O”, “3-state”, “Tx” and “Rx”.
AMI_Model_Type is optional. If AMI_Model_Type is present with Value “I/O” or “3-state”, AMI_Model_Direction is required.
AMI_Model_Type is not permitted with all [Model] Model Types. EDA tools are assumed to check the [Model] Model_Type of an analog buffer against the AMI_Model_Type of any associated [Algorithmic Model]. Table 1 below defines the [Model] Model_Type circumstances in which AMI_Model_Type is permitted in the associated [Alogorithmic Model], the matching [Model] Model_type, and where the AMI_Model_[Algorithmic Model] Direction subparameter is required.
In the absence of AMI_Model_Type, the buffer inherits the [Algorithmic Model] Direction Model_Type subparameter of the associated [Algorithmic Model] keyword according to Table 12. Note that this does not eliminate potential ambiguities in model treatment during simulation.
The combination of AMI_Model_Type and AMI_Model_Direction permit a singleensures consistent AMI parameter file and DLL executable file interactions to be maintained for an I/O- or 3-state-capable buffers that can handles both Tx and Rx or Tx and high-impedance functions.
AMI_Model_Type and AMI_Model_Direction areis not legal as a Reserved_Parameters in version 6.0 or and earlier.

Only certain Reserved Parameters are consistent with each AMI_Model_Type. The rules for AMI_Model_Type consistency are shown in Table 1 below.

Table 1 – AMI_Model_Type and Reserved Parameter Interaction
	Reserved Parameter
	AMI_Model_Types Permitted

	Rx_Clock_PDF
	Rx

	Rx_Clock_Recovery_DCD
	Rx

	Rx_Clock_Recovery_Dj
	Rx

	Rx_Clock_Recovery_Mean
	Rx

	Rx_Clock_Recovery_Rj
	Rx

	Rx_Clock_Recovery_Sj
	Rx

	Rx_DCD
	Rx

	Rx_Dj
	Rx

	Rx_Noise
	Rx

	Rx_Receiver_Sensitivity
	Rx

	Rx_Rj
	Rx

	Rx_Sj
	Rx

	Tx_DCD
	Tx

	Tx_Dj
	Tx

	Tx_Jitter
	Tx

	Tx_Rj
	Tx

	Tx_Sj
	Tx

	Tx_Sj_Frequency
	Tx

	DLL_ID
	Tx, Rx

	DLL_Path
	Tx, Rx

	Supporting Files
	Tx, Rx

	AMI_Version
	Tx, Rx

	GetWave_Exists
	Tx, Rx

	Ignore_Bits
	Tx, Rx

	Init_Returns_Impulse
	Tx, Rx

	Max_Init_Aggressors
	Tx, Rx

	Use_Init_Output
	N/A (illegal combination)

Table 1 2 – AMI_Model_Direction Type, [Algorithmic Model] Direction and [Model] Model_Type Interaction
	[Model] Model Type
	[Algorithmic Model] Direction Permitted, with what Value(s)?
	AMI_Model_Type Permitted, with what Value(s)?

	Input
Input_ECL
	Optional; “Rx” is assumed if not present
	Yes; Value shall be “Rx”

	I/O
I/O_open_drain
I/O_open_sink
I/O_open_source
I/O_ECL
	Required; at least one “Tx” and “Rx” [Algorithmic Model] required
	Yes; Value shall be “I/OTx” or “Rx”

	Terminator
	N/A (illegal)
	N/A (illegal)No

	Output
Output_ECL
	Optional; “Tx” is assumed if not present
	Yes; Value shall be “Tx”

	3-state
3-state_ECL
	Optional; “Tx” is assumed if not present
	Yes; Value shall be “3-stateTx”

	Open_sink
Open_drain
Open_source
	Optional; “Tx” is assumed if not present
	Yes; Value shall be “Tx”

	Series
	N/A (illegal)
	N/A (illegal)No

	Series_switch
	N/A (illegal)
	N/A (illegal)No

	Input_diff

	Optional; “Rx” is assumed if not present
	Yes; Value shall be “Rx”

	Output_diff
	Optional; “Tx” is assumed if not present
	Yes; Value shall be “Tx”

	I/O_diff
	Required; at least one “Tx” and “Rx” [Algorithmic Model] required
	Yes; Value shall be “I/OTx” or “Rx”

	3-state_diff
	Optional; “Tx” is assumed if not present
	Yes; Value shall be “3-stateTx”

Other Notes:	This parameter prevents association of an Algorithmic Model with an incompatible analog model. AMI_Model_Type is assumed defined and fixed by the model author.

Examples:
(AMI_Model_Type (Usage Info) (Type String) (Value “I/OTx”)
	(Description “Valid values are 3-state, I/O, Tx, and Rx”)
)

Parameter:	AMI_Model_Direction
Required:	Yes, if AMI_Model_Type uses Value “3-state” or “I/O”
Descriptors:
Usage:		In, Info
Type:		String
Format:		List
Default:	<string_literal>
Description:	<string >
Definition:	Tells the model the direction (state) of a 3-state or I/O [Algorithmic Model] to use in a given simulation.
Usage Rules:
AMI_Model_Direction required where AMI_Model_Type for the same [Algorithmic Model] is declared with Value “I/O” or “3-state”. In this case, the simulation tool must know the specific state of the buffer for that simulation. AMI_Model_Direction may be used for other AMI_Model_Type assignments, but is optional in those cases. AMI_Model_Direction is prohibited for an Algorithmic Model where AMI_Model_Type is not present.
AMI_Model_Direction accepts string literal values of “Ignore”, “Tx” or “Rx” in a List Format. The List values available for any given instance shall not be greater than two. Valid Values of AMI_Model_Direction for AMI_Model_Type assignments of “I/O” are “Tx” and “Rx”. Valid Values of AMI_Model_Direction for AMI_Model_Type assignments of “3-state” are “Tx” and “Ignore”. The available List values for AMI_Model_Direction in a model for any given AMI_Model_Type are listed in Table 1.
Changing of AMI_Model_Direction during a simulation is not permitted.
AMI_Model_Direction is assumed to be configurable between the available options at simulation time by the user through the EDA tool. The combination of AMI_Model_Type and AMI_Model_Direction permit a single AMI parameter file and DLL to be maintained for an I/O buffer that handles both Tx and Rx functions.
AMI_Model_Type and AMI_Model_Direction are not legal as Reserved_Parameters in version 6.0 or earlier.
Other Notes:	This parameter prevents association of an Algorithmic Model with an incompatible analog model.
Examples:
(AMI_Model_Direction (Usage In) (Type String) (List “Tx” “Rx”)
	(Description “Valid values are Ignore, Tx, and Rx”)

Add the following updated text under the “Keyword Definitions” section of Chapter 10:

Keywords:	[Algorithmic Model], [End Algorithmic Model]
Required: 	No
Description: 	Used to reference an executable model file and accompanying parameter definition file. This executable model file encapsulates signal processing functions, while the parameter definition file includes configuration information for the model and EDA tool. In the case of a receiver, the executable model file may additionally include clock and data recovery functions. The executable model file can receive and modify waveforms with the analog channel, where the analog channel consists of the transmitter output stage, the transmission channel itself and the receiver input stage. This data exchange is implemented through a set of software functions. The signature of these functions is elaborated in Section 10.2 of this document. The function interface must comply with the ANSI "C" language.
Note that, while the file is described here as an “executable model file”, the file is a compiled library of functions that may or may not be itself executable.
Sub-Params: 	Executable, Direction
Usage Rules:	The [Algorithmic Model] keyword must be positioned within a [Model] section and it may appear only once for each [Model] keyword in a .ibs file. It is not permitted under the [Submodel] keyword or in [Model]s which are of Model_type Terminator, Series or Series_switch.
The [Algorithmic Model] always processes a single waveform regardless whether the model is single ended or differential. When the model is differential, the waveform passed to the [Algorithmic Model] must be a difference waveform.
[Algorithmic Model], [End Algorithmic Model]:
Begins and ends an algorithmic model section, respectively.
Executable:
Three entries follow the Executable subparameter on each line:
Platform_Compiler_Bits File_Name Parameter_File
The Platform_Compiler_Bits entry provides the name of the operating system, compiler and its version and the number of bits the executable model file is compiled for. It is a string without white spaces, consisting of three fields separated by an underscore (“_”). The first field consists of the name of the operating system followed optionally by its version. The second field consists of the name of the compiler followed by optionally by its version. The third field is an integer indicating the platform architecture. If the version for either the operating system or the compiler contains an underscore, it must be converted to a hyphen “-”. This is so that an underscore is only present as a separation character in the entry.
The architecture entry can be either “32” or “64”. Examples of Platform_Compiler_Bits:
Linux_gcc3.2.3_32
Solaris5.10_gcc4.1.1_64
Solaris_cc5.7_32
Windows_VisualStudio7.1.3088_32
HP-UX_accA.03.52_32

The EDA tool will check for the compiler information and verify if the executable model file is compatible with the operating system and platform.
Multiple occurrences, without duplication, of Executable are permitted to allow for providing executable model files for as many combinations of operating system platforms and compilers for the same algorithmic model.
The File_Name provides the name of the executable model file. The executable model file should be in the same directory as the.ibs file.
The Parameter_File entry provides the name of the parameter definition file, which shall have an extension of .ami. This must be an external file and should reside in the same directory as the .ibs file and the executable model file. See Section 10.3 for details.
Direction:
The Direction subparameter accepts a single string argument, which may be either “Tx” or “Rx”. The subparameter is required if the Model_type for the associated [Model] is “I/O”, “3-state”, “I/O_open_drain”, “I/O_open_sink”, “I/O_open_source”, “I/O_ECL”, or “3-state_ECL”. For any [Model] of types “I/O”, “I/O_open_drain”, “I/O_open_sink”, “I/O_open_source”, or “I/O_ECL”, at least one [Algorithmic Model] of Direction “Tx” shall be present and at least one [Algorithmic Model] of Direction “Rx” shall be present. For any [Model] of types “3-state” or “3-state_ECL”, Direction is optional, but only “Tx” as a Direction argument is permitted (no algorithmic model support for non-transmitting mode is provided). For all other Model_types where [Algorithmic Model] is permitted, the Direction subparameter is optional. If the Direction parameter is optional and omitted, the direction of the associated [Algorithmic Model]s shall be assumed by the EDA tool to follow the [Model] Model_type declaration.

It is assumed that the [Model] Model_type, [Algorithmic Model] Direction, and .ami file AMI_Model_Type are consistent (e.g., that a [Model] of Model_type I/O shall have associated [Algorithmic Model]s of Direction “Tx” and “Rx”, each with unique .ami file associations where the .ami files use “Tx” or “Rx” as AMI_Model_Types, respectively).

Multiple [Algorithmic Model] declarations may exist under a single [Model]. For any given [Model], each [Algorithmic Model] declaration shall refer to a unique .ami file (Parameter_Name argument). Identical Executable File_Name arguments may be used for multiple [Algorithmic Model] declarations under a single [Model], regardless of Direction. In other words, a single executable may be configured to process both transmit and receive waveform information and so may be used for both directions; unique parameter files are required for each direction, however.
The EDA tool is responsible for determining, through interaction with the user, the particular direction and associated files to use for a given simulation.

Examples:
Example of Receiver Model in [Algorithmic Model]:
[Algorithmic Model]
|
Executable Windows_VisualStudio_32 example_rx.dll example_rx_params.ami
|
[End Algorithmic Model]

Example of Transmitter Model in [Algorithmic Model]:
[Algorithmic Model]
|
Executable Windows_VisualStudio_32 tx_getwave.dll tx_getwave_params.ami
Executable Solaris_cc_32 libtx_getwave.so tx_getwave_params.ami
|
[End Algorithmic Model]

Example of Bi-directional Model in [Algorithmic Model]:

[Algorithmic Model]
|
Direction TX | must be consistent with [Model_Type]
Executable Windows_VisualStudio_32 tx_getwave.dll tx_getwave_params.ami
Executable Solaris_cc_32 libtx_getwave.so tx_getwave_params.ami
|
[End Algorithmic Model]

[Algorithmic Model]
|
Direction RX | must be consistent with [Model_Type]
Executable Windows_VisualStudio_32 rx_getwave.dll rx_getwave_params.ami
Executable Solaris_cc_32 libtx_getwave.so rx_getwave_params.ami
|
[End Algorithmic Model]

8
7
